

Session 1 — No Code Vision Quality Assurance: Train, Test, Deploy with Cobots

PROGRAM 4

Introduction to Visual Quality Assurance and the Technology Landscape

Visual Quality Assurance

Use of visual inspection (manual or automated) to verify produce appearance, integrity and compliance with standards

- Compliance
 - Meets regulatory and safety standards
- Ensures Product Quality
 - Maintains brand reputation and customer satisfaction
- Reduces Waste and Rework
 - Early detection prevents defective products from reaching later stages
- Cost Efficiency
 - Avoids costly recalls and production downtime

Common Challenges of Manual Inspection

Manual inspection is carried out by a human operator

- Manual Inspection is subject to
 - Human Error
 - Fatigue
 - Inattention
 - Poor training
 - Subjectivity
 - I think it is okay you think it is problematic
 - Lack of scalability
 - To inspect more parts we need more operators
 - Cycles back to subjectivity

Automated Inspection

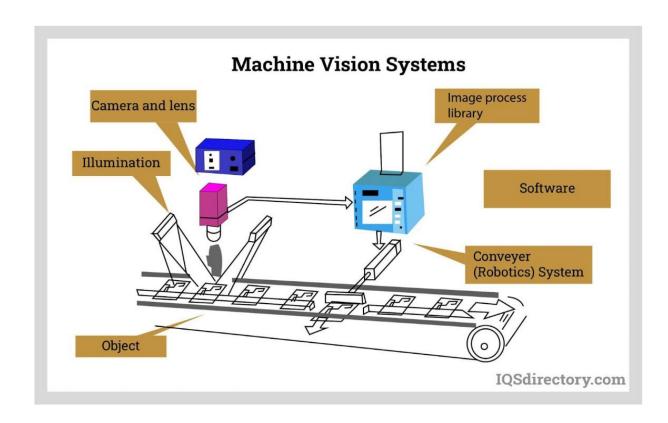
Modern tools can automate inspection

- Machine vision systems (cameras and image processing software)
 - High-resolution cameras capture product images
 - Computer algorithms detect defects
- Different options
 - 2D vision
 - 3D vision
 - Hyperspectral and multispectral imaging
 - Lasers and Structured Lighting
- Artificial Intelligence (AI) and Deep Learning
 - Neural networks for pattern recognition
 - Adaptive inspection

Automated Inspection Limitations

It isn't easy

- Highly complex
 - System design
 - Programming expertise
 - Avoid variabilities
 - Lighting, positioning, etc.
 - Large datasets needed
 - Integration into existing systems
 - Limited accessibility for SMEs
- A no-code approach
 - Modern tools can be used to simplify model creation without coding



Machine Learning Foundation

Artificial Intelligence

Al involves techniques that equip computers to emulate human behavior, enabling them to learn, make decisions, recognize patterns, and solve complex problems in a manner akin to human intelligence.

Example: Bin picking using robot



<u>Applications:</u> Autonomous Vehicles, Mobile phones, cloud services and emails.

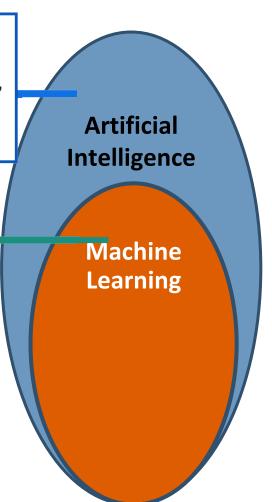
What Is Machine Learning?

Artificial Intelligence

Al involves techniques that equip computers to emulate human behavior, enabling them to learn, make decisions, recognize patterns, and solve complex problems in a manner akin to human intelligence.

Machine Learning

ML is a subset of AI, uses advanced algorithms to detect patterns in large data sets, allowing machines to learn and adapt. ML algorithms use supervised or unsupervised learning methods.



Example: Bin picking using robot

Supervised Learning	Unsupervised Learning	
Uses labelled data	Uses unlabelled data	
Learns exact categories	Finds patterns/groups	
Example: Good vs Bad parts	Example: Grouping similar defects	
You know the correct answer	Model discovers structure	

UNSUPERVISED LEARNING

What Is Deep Learning?

Learning

Artificial Intelligence

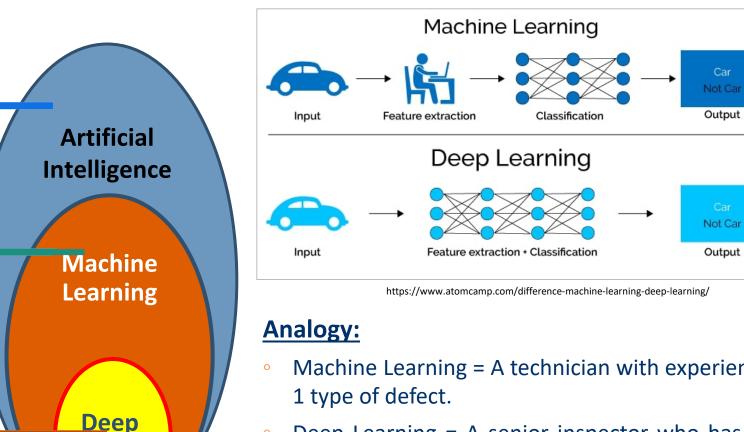
Al involves techniques that equip computers to emulate human behavior, enabling them to learn, make decisions, recognize patterns, and solve complex problems in a manner akin to human intelligence.

Machine Learning

ML is a subset of AI, uses advanced algorithms to detect patterns in large data sets, allowing machines to learn and adapt. ML algorithms use supervised or unsupervised learning methods.

Deep Learning

DL is a subset of ML which uses neural networks for in-depth data processing and analytical tasks. DL leverages multiple layers of artificial neural networks to extract high-level features from raw input data, simulating the way human brains perceive and understand the world.

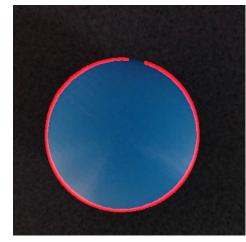


- Machine Learning = A technician with experience in
- Deep Learning = A senior inspector who has seen thousands of samples and can spot even subtle defects automatically, across different lighting, orientations, and shapes.

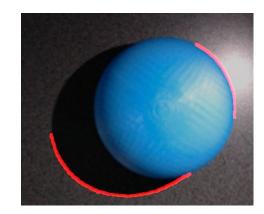
Why Machine Learning for Visual QA?

- Traditional rule-based vision fails under real factory variation
- ML learns complex patterns from examples, not fixed rules
- Detects subtle, irregular defects that rules cannot describe
- ➤ Fewer false positives → higher throughput
- Essential for flexible, robot-integratedQA systems.

Normal room light

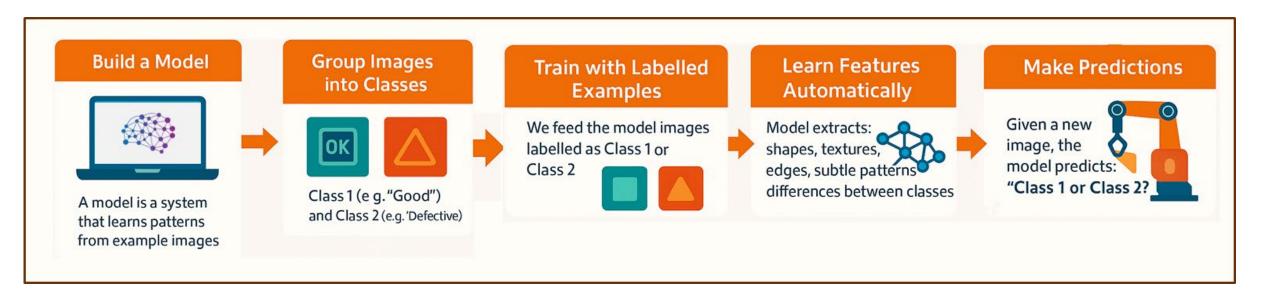


Without light



Focused light

What Does an ML Model Actually Do?



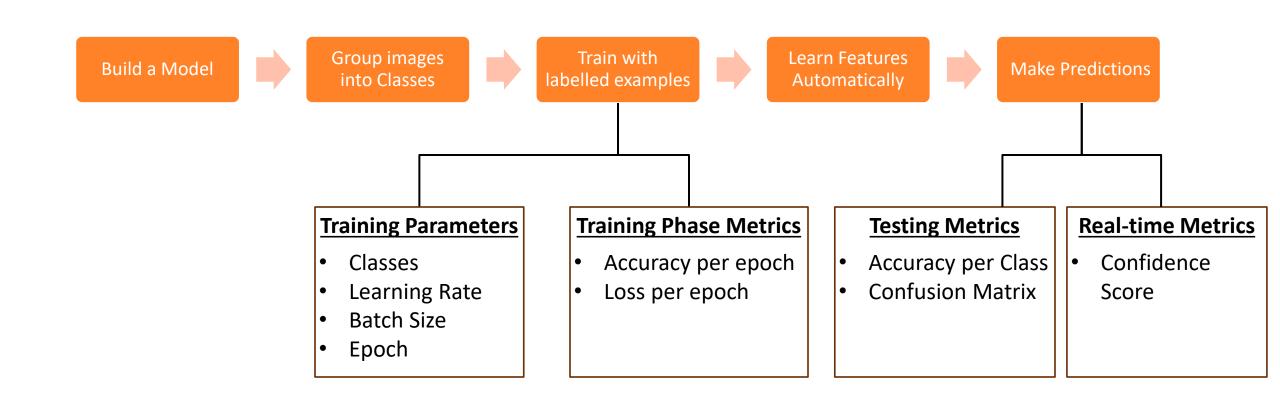
Build a Model

Group images into Classes

Train with labelled examples

Learn Features Automatically

Machine Learning Parameters and Metrics



Classes

- What is it?
 - Groups or categories the model learns to recognise.
 - Example in QA: "Good", "Defective", "Type A Defect", "Type
 Defect".
- ➤ Why does it matter?
 - Clear, well-separated classes help the model learn correctly.
 - o If classes overlap (e.g., unclear defect labels), the model become confused.
- >Impact on prediction:
 - Better class definitions → higher accuracy.
 - Poorly separated classes → misclassification during testing.

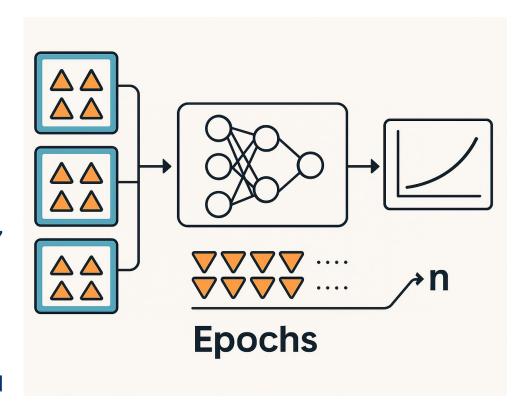
Group images into Classes

Train with labelled examples

Learn Features Automatically

2. Epochs

- ➤ What is it?
 - One complete pass through the entire training dataset.
- Why does it matter?
 - More epochs = more opportunities for the model to learn patterns.
 - Too few epochs → underfitting (model hasn't learned enough).
 - Too many epochs → overfitting (model memorises training data, fails on new images).
- ➤ Impact on prediction:
 - Proper number of epochs improves generalisation.
 - Overfitting shows high training accuracy but poor real-world performance.



Group images into Classes

Train with labelled examples

Learn Features Automatically

3. Batch Size

- ➤ What is it?
 - Number of images the model processes at a time during training.
 - Example: batch size of 16 = learns from 16 images before updating its parameters.
- ➤ Why does it matter?
 - Small batch = slower but more stable learning.
 - Large batch = faster training but may skip fine details.
- ➤ Impact on prediction:
 - Wrong batch size can cause unstable learning or poor generalization.
 - Balanced batch size improves consistency and accuracy.

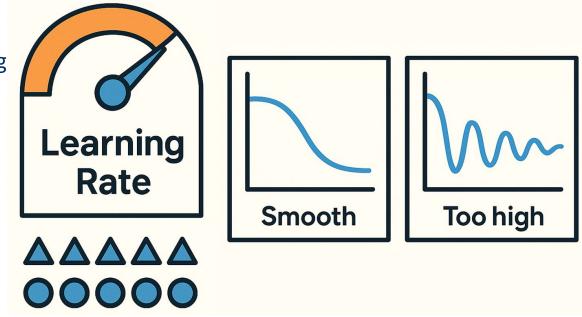
Group images into Classes

Train with labelled examples

Learn Features Automatically

4. Learning Rate

- > What is it?
 - How big a step the model takes when adjusting itself during training.
 - Think of it as the model's "learning speed".
- Why does it matter?
 - Too high → model jumps around, misses important patterns.
 - o Too low → training becomes very slow or stuck.
- > Impact on prediction:
 - Correct learning rate leads to stable, efficient learning.
 - Poor learning rate = inaccurate predictions or failure to converge.

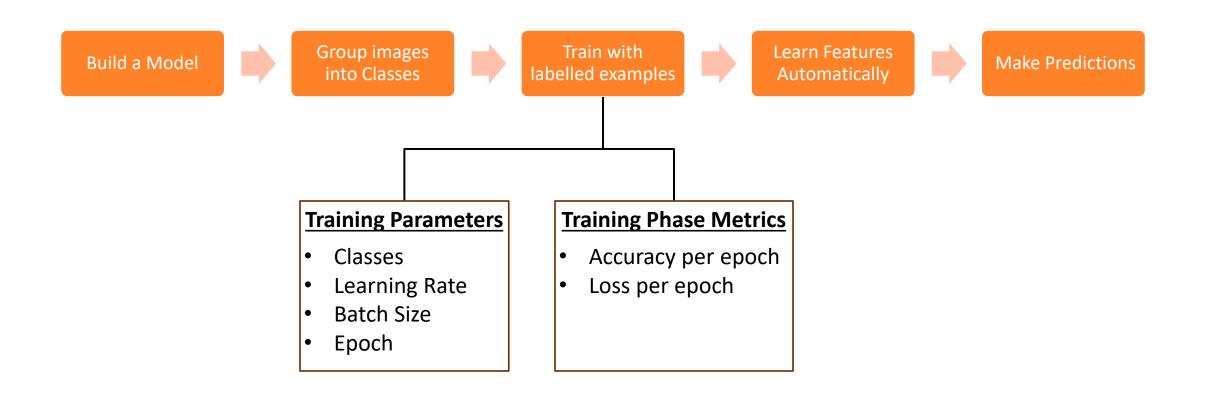


Group images into Classes

Train with labelled examples

Learn Features Automatically

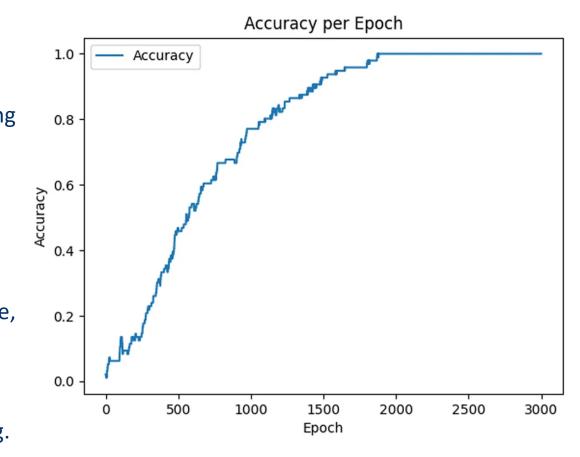
Machine Learning Parameters and Metrics



Training Phase Metrics

Accuracy per Epoch

- >What is it?
 - Shows how the model's accuracy improves after each training cycle (epoch).
- ➤ Why it matters:
 - Helps see if the model is learning properly.
 - A steadily increasing accuracy curve = healthy learning.
 - Flat or unstable curves indicate issues (bad learning rate, insufficient data, noisy labels).
- ► Industry impact:
 - Ensures the final model is trained correctly and not underfitting.



Group images into Classes

Train with labelled examples

Learn Features Automatically

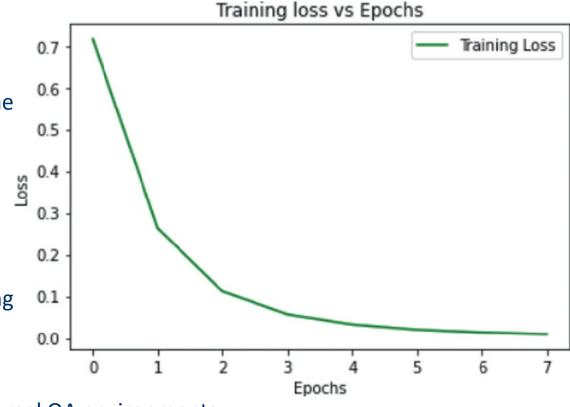
Training Phase Metrics

Loss per Epoch

- ➤ What is it?
 - Loss measures how far the model's predictions are from the correct answers.
 - o Lower loss → better predictions.
- ➤ Why it matters:
 - Loss should go down steadily during training.
 - If loss increases or becomes unstable, the model is not learning well.

➤ Industry impact:

- A low, stable loss value means the model will perform better in real QA environments.
- Helps diagnose problems early, before deploying the model.



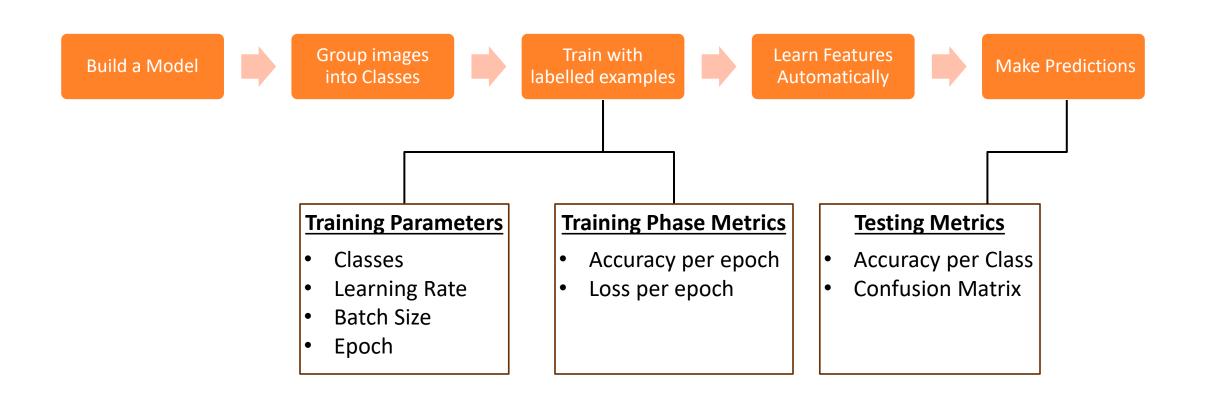
Build a Model

Group images into Classes

Train with labelled examples

Learn Features Automatically

Machine Learning Parameters and Metrics



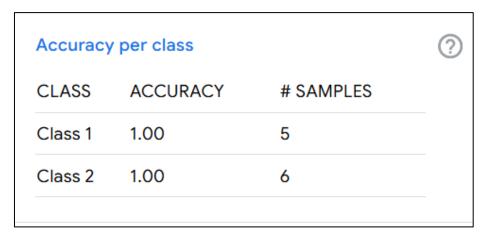
Testing Metrics

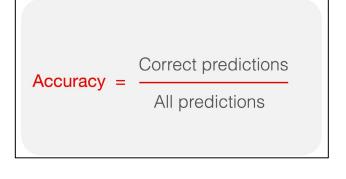
Accuracy per Class

- ➤ What is it?
 - Measures how well the model predicts each class individually.
 - Example:
 - Class "Good": 95% accurate
 - Class "Defective": 88% accurate
- Why it matters:
 - Some classes are easier to identify than others.
 - Helps you understand if the model struggles with specific defect types.
- ► Industry impact:
 - Ensures consistent-quality inspection across all product categories.
 - Helps focus data collection on weaker classes.

Train with labelled examples

Learn Features Automatically

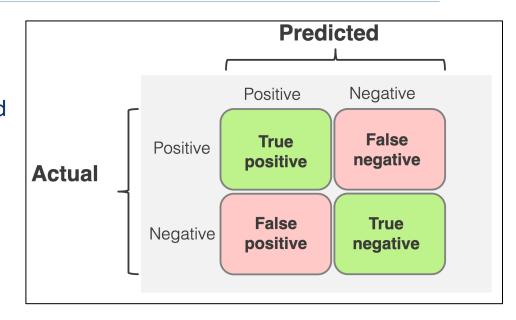


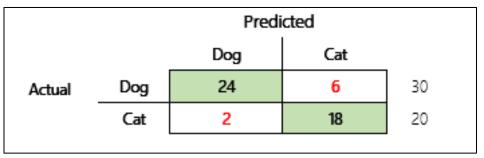


Testing Metrics

2. Confusion Matrix

- >What is it?
 - A table showing exactly where the model gets things right, and where it makes mistakes.
 - Rows True labels and Columns- Predicted labels
- ➤ Why it matters:
 - Shows if the model confuses two specific defect types.
 - Highlights false positives and false negatives.
 - Helps diagnose issues source.
- ➤ Industry impact:
 - Helps avoid costly misclassifications, such as passing a defective part.
 - Allows targeted improvements (e.g., adding more images for a tricky defect).





Group images into Classes

Train with labelled examples

Learn Features Automatically

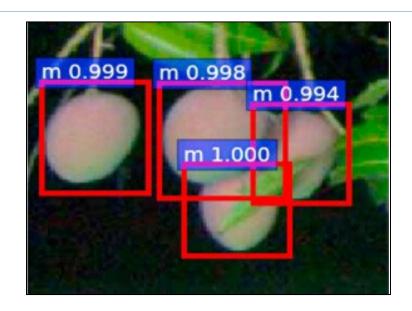
Machine Learning Parameters and Metrics

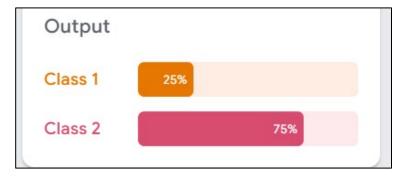


Real-Time Metrics

Confidence Score

- >What is it?
 - A number (0–100%) that tells how sure the model is about its prediction.
- ➤ Why it matters:
 - → Higher confidence → model is more certain.
 - Low confidence → model isn't sure, may require review.
- ➤ Industry impact:
 - Helps decide when to trust the model vs when to doublecheck.
 - O Useful for QA systems that need a threshold (e.g., reject if <80% confidence).</p>



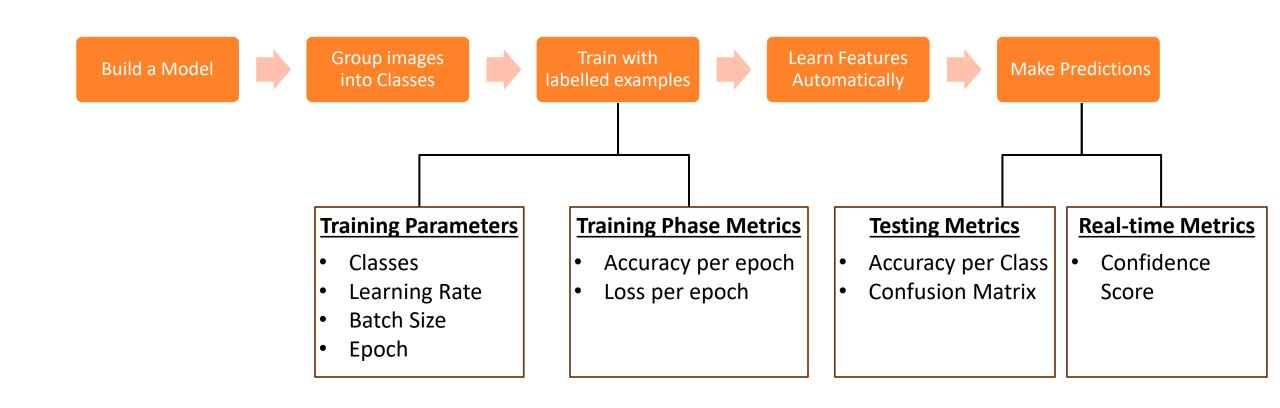


Group images into Classes

Train with labelled examples

Learn Features Automatically

Machine Learning Parameters and Metrics

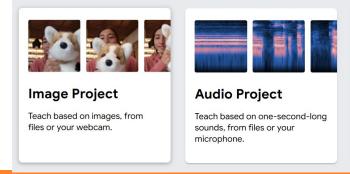


Hands-On Machine Learning Training Session

Introducing Google Teachable Machine (GTM)

- What is Google Teachable Machine?
 - A simple, no-code machine learning tool from Google.
 - oLet's you train image, sound, or pose recognition models without any programming.
 - Perfect for beginners and industry users.
- **>** Limitations
 - Not meant for industrial accuracy or high reliability, however, best used as a teaching and prototyping tool, not production QA.
 - Limited training depth and customization
 - Not suitable for complex defects or large-scale datasets

Google
Teachable
Machine
Create Image Data set



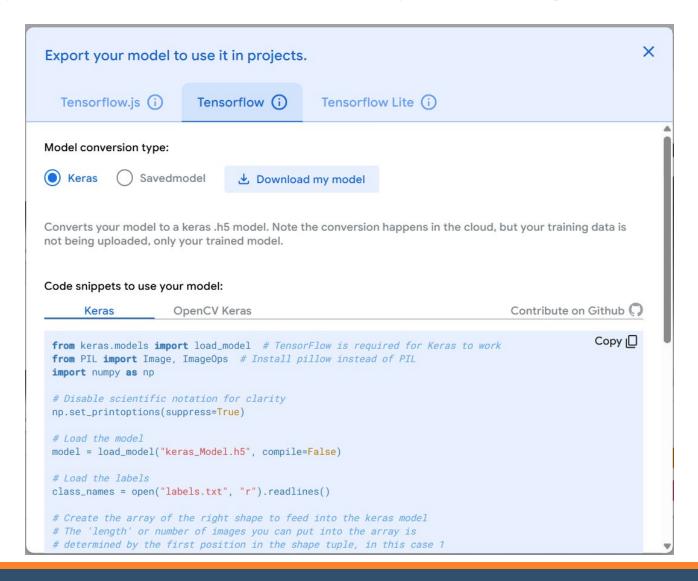
Pose Project

files or your webcam.

Teach based on images, from

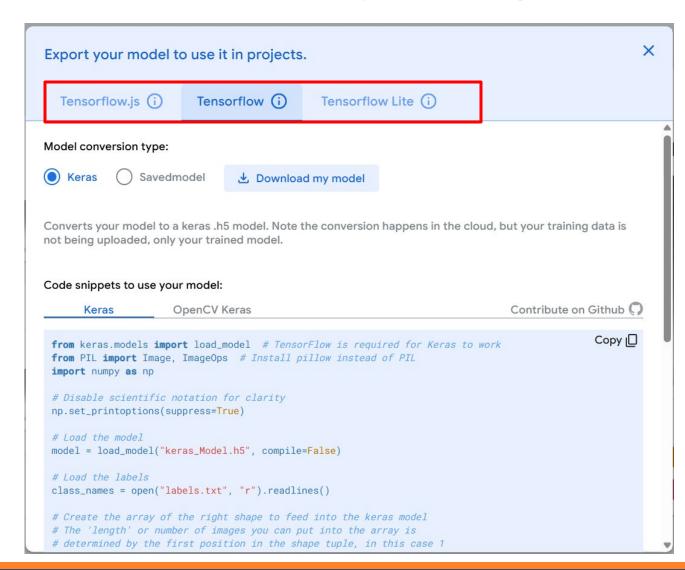
GTM - Step-by-Step Workflow - Exporting

- ➤ What Happens After Training?
 - Once the model is trained in Teachable Machine, we can export it for use in other applications.
 - Exporting gives us the actual files the ML system uses to make predictions.



GTM - Step-by-Step Workflow - Exporting

- ➤ Where Can the Exported Model Be Used?
 - Robot vision systems (integration with cobots and QA work cells)
 - Edge devices such as Raspberry Pi, NVIDIA Jetson, or microcontrollers
 - Web applications
 - Offline inspection tools
- Export Options in Teachable Machine
 - TensorFlow/Keras (.h5) → For Python, robotics, QA pipelines
 - TensorFlow Lite (.tflite) → For embedded or mobile devices
 - \circ TensorFlow.js \rightarrow For web-based applications.



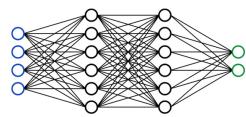
GTM - Step-by-Step Workflow - Exporting

➤ What Are the Keras Files?

1. Keras Model (.h5 file)

- Keras is a widely used machine learning framework built on top of TensorFlow.
- The .h5 file contains the trained model: The learned patterns, the features extracted, and the final classification logic.
- This file is what we load into other software or Python scripts to use the model.

Keras



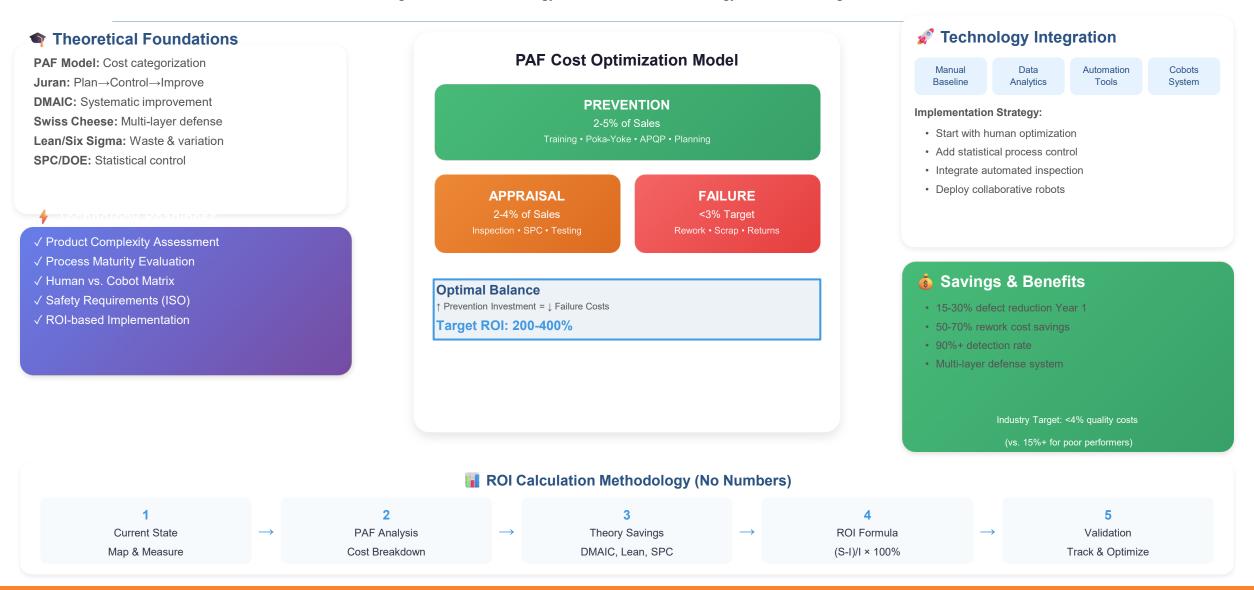
Labels File (labels.txt)

- Contains the names of the classes you trained (e.g., Good, Defective).
- The model uses this file to understand what each prediction corresponds to.
- Without labels, the model would only output numbers.

Industry Case Study

Integrated Quality Control Framework

Combining PAF Model • Technology Readiness • ROI Methodology for Manufacturing Excellence



Bringing It All Together

From Workshop to Workplace

From Concept to Factory Floor

- ➤ Today's GTM activity mirrors the same workflow used in industry: Capture → Train → Test → Deploy
- The difference in real factories is mainly:
 - More robust hardware
 - Better lighting control
 - Structured data pipelines
 - The underlying ML logic remains the same

Box Box Box

Assign labels to the entire image.

Tracked Object Counts

defective

Detect multiple objects and their actual shape

2. Industrial ML Tools & Models

- Low-/No-Code (SME-ready): Roboflow (vision datasets + training), Edge Impulse (embedded ML), Microsoft Custom Vision (fast cloud training), Siemens Industrial Edge (shop-floor integration)
- >Advanced Models (for later/partners): YOLO (real-time detection), EfficientDet, FoundationPose, etc.

Internal

From Workshop to Workplace

- 4. Scaling Path for SMEs
 - ➤ Move from pilot → production gradually
- 5. Program 4 Real Industry Collaborations
 - QA frameworks for medical manufacturing
 - Quality inspection & classification for steel coil production (InfraBuild)
 - Robotic adaptive welding (SMENCO)
- 6. Where can we help you?
 - Testing a concept
 - Running a pilot
 - Evaluating cobot integration
 - Exploring a new automation challenge.

Final Reflection and Closing Remarks

THANK YOU

Dr. Michelle Dunn, Swinburne Email:

jdunn@swin.edu.au

Dr. Katia Bourahmoune,
UTS

Email:
Katia.Bourahmoune@uts
.edu.au

A/Prof. Chris McCarthy, Swinburne

Email: cdmccarthy@swin.edu. au

A/Prof. Gavin Paul, UTS
Email:

Gavin.Paul-1@uts.edu.au

Dr. Mariadas Roshan, Swinburne

Email: mroshan@swin.edu.au

nt.uts.edu.au

If you have questions, want to explore potential collaboration, or need support with quality-assurance, robotics, or Al projects, please reach out to our team